8.5 Firewall

8.5 Firewall

19.56 0

8.5 Firewall

Ilustrasi mengenai Firewall

Ilustrasi mengenai Firewall dalam sebuah jaringan komputer.
Contoh dari user interface untuk firewall pada Ubuntu (Gufw)
Tembok api atau dinding api adalah suatu sistem perangkat lunak yang mengizinkan lalu lintas jaringan yang dianggap aman untuk bisa melaluinya dan mencegah lalu lintas jaringan yang dianggap tidak aman. Umumnya, sebuah tembok-api diterapkan dalam sebuah mesin terdedikasi, yang berjalan pada pintu gerbang (gateway) antara jaringan lokal dengan jaringan Internet.
Tembok-api digunakan untuk membatasi atau mengontrol akses terhadap siapa saja yang memiliki akses terhadap jaringan pribadi dari pihak luar. Saat ini, istilah firewall menjadi istilah lazim yang merujuk pada sistem yang mengatur komunikasi antar dua macam jaringan yang berbeda. Mengingat saat ini banyak perusahaan yang memiliki akses ke Internet dan juga tentu saja jaringan berbadan hukum di dalamnya, maka perlindungan terhadap perangkat digital perusahaan tersebut dari serangan para peretas, pemata-mata, ataupun pencuri data lainnya, menjadi kenyataan.


Jenis-jenis Firewall

Taksonomi Firewall
Firewall terbagi menjadi dua jenis, yakni sebagai berikut

Fungsi Firewall

Secara mendasar, firewall dapat melakukan hal-hal berikut:
  • Mengatur dan mengontrol lalu lintas jaringan
  • Melakukan autentikasi terhadap akses
  • Melindungi sumber daya dalam jaringan privat
  • Mencatat semua kejadian, dan melaporkan kepada administrator

Mengatur dan Mengontrol Lalu lintas jaringan

Fungsi pertama yang dapat dilakukan oleh firewall adalah firewall harus dapat mengatur dan mengontrol lalu lintas jaringan yang diizinkan untuk mengakses jaringan privat atau komputer yang dilindungi oleh firewall. Firewall melakukan hal yang demikian, dengan melakukan inspeksi terhadap paket-paket dan memantau koneksi yang sedang dibuat, lalu melakukan penapisan (filtering) terhadap koneksi berdasarkan hasil inspeksi paket dan koneksi tersebut.

Proses inspeksi Paket

Inspeksi paket ('packet inspection) merupakan proses yang dilakukan oleh firewall untuk 'menghadang' dan memproses data dalam sebuah paket untuk menentukan bahwa paket tersebut diizinkan atau ditolak, berdasarkan kebijakan akses (access policy) yang diterapkan oleh seorang administrator. Firewall, sebelum menentukan keputusan apakah hendak menolak atau menerima komunikasi dari luar, ia harus melakukan inspeksi terhadap setiap paket (baik yang masuk ataupun yang keluar) di setiap antarmuka dan membandingkannya dengan daftar kebijakan akses. Inspeksi paket dapat dilakukan dengan melihat elemen-elemen berikut, ketika menentukan apakah hendak menolak atau menerima komunikasi:
  • Alamat IP dari komputer sumber
  • Port sumber pada komputer sumber
  • Alamat IP dari komputer tujuan
  • Port tujuan data pada komputer tujuan
  • Protokol IP
  • Informasi header-header yang disimpan dalam paket

Koneksi dan Keadaan Koneksi

Agar dua host TCP/IP dapat saling berkomunikasi, mereka harus saling membuat koneksi antara satu dengan lainnya. Koneksi ini memiliki dua tujuan:
  1. Komputer dapat menggunakan koneksi tersebut untuk mengidentifikasikan dirinya kepada komputer lain, yang meyakinkan bahwa sistem lain yang tidak membuat koneksi tidak dapat mengirimkan data ke komputer tersebut. Firewall juga dapat menggunakan informasi koneksi untuk menentukan koneksi apa yang diizinkan oleh kebijakan akses dan menggunakannya untuk menentukan apakah paket data tersebut akan diterima atau ditolak.
  2. Koneksi digunakan untuk menentukan bagaimana cara dua host tersebut akan berkomunikasi antara satu dengan yang lainnya (apakah dengan menggunakan koneksi connection-oriented, atau connectionless).
Ilustrasi mengenai percakapan antara dua buah host
Kedua tujuan tersebut dapat digunakan untuk menentukan keadaan koneksi antara dua host tersebut, seperti halnya cara manusia bercakap-cakap. Jika Amir bertanya kepada Aminah mengenai sesuatu, maka Aminah akan meresponsnya dengan jawaban yang sesuai dengan pertanyaan yang diajukan oleh Amir; Pada saat Amir melontarkan pertanyaannya kepada Aminah, keadaan percakapan tersebut adalah Amir menunggu respons dari Aminah. Komunikasi di jaringan juga mengikuti cara yang sama untuk memantau keadaan percakapan komunikasi yang terjadi.
Firewall dapat memantau informasi keadaan koneksi untuk menentukan apakah ia hendak mengizinkan lalu lintas jaringan. Umumnya hal ini dilakukan dengan memelihara sebuah tabel keadaan koneksi (dalam istilah firewall: state table) yang memantau keadaan semua komunikasi yang melewati firewall. Dengan memantau keadaan koneksi ini, firewall dapat menentukan apakah data yang melewati firewall sedang "ditunggu" oleh host yang dituju, dan jika ya, aka mengizinkannya. Jika data yang melewati firewall tidak cocok dengan keadaan koneksi yang didefinisikan oleh tabel keadaan koneksi, maka data tersebut akan ditolak. Hal ini umumnya disebut sebagai Stateful Inspection.

Stateful Packet Inspection

Ketika sebuah firewall menggabungkan stateful inspection dengan packet inspection, maka firewall tersebut dinamakan dengan Stateful Packet Inspection (SPI). SPI merupakan proses inspeksi paket yang tidak dilakukan dengan menggunakan struktur paket dan data yang terkandung dalam paket, tapi juga pada keadaan apa host-host yang saling berkomunikasi tersebut berada. SPI mengizinkan firewall untuk melakukan penapisan tidak hanya berdasarkan isi paket tersebut, tapi juga berdasarkan koneksi atau keadaan koneksi, sehingga dapat mengakibatkan firewall memiliki kemampuan yang lebih fleksibel, mudah diatur, dan memiliki skalabilitas dalam hal penapisan yang tinggi.
Salah satu keunggulan dari SPI dibandingkan dengan inspeksi paket biasa adalah bahwa ketika sebuah koneksi telah dikenali dan diizinkan (tentu saja setelah dilakukan inspeksi), umumnya sebuah kebijakan (policy) tidak dibutuhkan untuk mengizinkan komunikasi balasan karena firewall tahu respons apa yang diharapkan akan diterima. Hal ini memungkinkan inspeksi terhadap data dan perintah yang terkandung dalam sebuah paket data untuk menentukan apakah sebuah koneksi diizinkan atau tidak, lalu firewall akan secara otomatis memantau keadaan percakapan dan secara dinamis mengizinkan lalu lintas yang sesuai dengan keadaan. Ini merupakan peningkatan yang cukup signifikan jika dibandingkan dengan firewall dengan inspeksi paket biasa. Apalagi, proses ini diselesaikan tanpa adanya kebutuhan untuk mendefinisikan sebuah kebijakan untuk mengizinkan respons dan komunikasi selanjutnya. Kebanyakan firewall modern telah mendukung fungsi ini.

Melakukan autentikasi terhadap akses

Fungsi fundamental firewall yang kedua adalah firewall dapat melakukan autentikasi terhadap akses.
Protokol TCP/IP dibangun dengan premis bahwa protokol tersebut mendukung komunikasi yang terbuka. Jika dua host saling mengetahui alamat IP satu sama lainnya, maka mereka diizinkan untuk saling berkomunikasi. Pada awal-awal perkembangan Internet, hal ini boleh dianggap sebagai suatu berkah. Tapi saat ini, di saat semakin banyak yang terhubung ke Internet, mungkin kita tidak mau siapa saja yang dapat berkomunikasi dengan sistem yang kita miliki. Karenanya, firewall dilengkapi dengan fungsi autentikasi dengan menggunakan beberapa mekanisme autentikasi, sebagai berikut:
  • Firewall dapat meminta input dari pengguna mengenai nama pengguna (user name) serta kata kunci (password). Metode ini sering disebut sebagai extended authentication atau xauth. Menggunakan xauth pengguna yang mencoba untuk membuat sebuah koneksi akan diminta input mengenai nama dan kata kuncinya sebelum akhirnya diizinkan oleh firewall. Umumnya, setelah koneksi diizinkan oleh kebijakan keamanan dalam firewall, firewall pun tidak perlu lagi mengisikan input password dan namanya, kecuali jika koneksi terputus dan pengguna mencoba menghubungkan dirinya kembali.
  • Metode kedua adalah dengan menggunakan sertifikat digital dan kunci publik. Keunggulan metode ini dibandingkan dengan metode pertama adalah proses autentikasi dapat terjadi tanpa intervensi pengguna. Selain itu, metode ini lebih cepat dalam rangka melakukan proses autentikasi. Meskipun demikian, metode ini lebih rumit implementasinya karena membutuhkan banyak komponen seperti halnya implementasi infrastruktur kunci publik.
  • Metode selanjutnya adalah dengan menggunakan Pre-Shared Key (PSK) atau kunci yang telah diberitahu kepada pengguna. Jika dibandingkan dengan sertifikat digital, PSK lebih mudah diimplenentasikan karena lebih sederhana, tetapi PSK juga mengizinkan proses autentikasi terjadi tanpa intervensi pengguna. Dengan menggunakan PSK, setiap host akan diberikan sebuah kunci yang telah ditentukan sebelumnya yang kemudian digunakan untuk proses autentikasi. Kelemahan metode ini adalah kunci PSK jarang sekali diperbarui dan banyak organisasi sering sekali menggunakan kunci yang sama untuk melakukan koneksi terhadap host-host yang berada pada jarak jauh, sehingga hal ini sama saja meruntuhkan proses autentikasi. Agar tercapai sebuah derajat keamanan yang tinggi, umumnya beberapa organisasi juga menggunakan gabungan antara metode PSK dengan xauth atau PSK dengan sertifikat digital.
Dengan mengimplementasikan proses autentikasi, firewall dapat menjamin bahwa koneksi dapat diizinkan atau tidak. Meskipun jika paket telah diizinkan dengan menggunakan inspeksi paket (PI) atau berdasarkan keadaan koneksi (SPI), jika host tersebut tidak lolos proses autentikasi, paket tersebut akan dibuang.

Melindungi sumber daya dalam jaringan privat

Salah satu tugas firewall adalah melindungi sumber daya dari ancaman yang mungkin datang. Proteksi ini dapat diperoleh dengan menggunakan beberapa pengaturan peraturan akses (access control), penggunaan SPI, application proxy, atau kombinasi dari semuanya untuk mengamankan host yang dilindungi supaya tidak dapat diakses oleh host-host yang mencurigakan atau dari lalu lintas jaringan yang mencurigakan. Meskipun demikian, firewall bukan satu-satunya metode proteksi teraman terhadap sumber daya, dan mempercayakan proteksi firewall dari ancaman secara eksklusif adalah salah satu kesalahan fatal.
Jika sebuah host yang menjalankan sistem operasi tertentu yang memiliki lubang keamanan yang belum ditambal dikoneksikan ke Internet, firewall mungkin tidak dapat mencegah dieksploitasinya host tersebut oleh host-host lainnya, khususnya jika exploit tersebut menggunakan lalu lintas yang oleh firewall telah diizinkan (dalam konfigurasinya). Sebagai contoh, jika sebuah packet-inspection firewall mengizinkan lalu lintas HTTP ke sebuah web server yang menjalankan sebuah layanan web yang memiliki lubang keamanan yang belum ditambal, maka seorang pengguna yang "iseng" dapat saja membuat exploit untuk meruntuhkan web server tersebut karena memang web server yang bersangkutan memiliki lubang keamanan yang belum ditambal.
Dalam contoh ini, web server tersebut akhirnya mengakibatkan proteksi yang ditawarkan oleh firewall menjadi tidak berguna. Hal ini disebabkan oleh firewall tidak dapat membedakan antara request HTTP yang mencurigakan atau tidak. Apalagi, jika firewall yang digunakan bukan application proxy. Oleh karena itulah, sumber daya yang dilindungi haruslah dipelihara dengan melakukan penambalan terhadap lubang-lubang keamanan, selain tentunya dilindungi oleh firewall.

Cara Kerja Firewall

Firewall berada di antara kedua jaringan seperti internet dan komputer sehingga firewall berfungsi sebagai pelindung. Tujuan utama adanya firewall adalah untuk user yang tidak menginginkan lalu lintas jaringan yang berusaha masuk ke komputer, namun tidak hanya itu saja yang bisa dilakukan firewall. Firewall juga dapat menganalisis jaringan yang mencoba masuk ke komputer anda, dan dapat melakukan apa yang harus dilakukan ketika jaringan tersebut masuk. Contohnya saja, firewall bisa diatur untuk memblokir beberapa jenis jaringan yang mencoba keluar atau mencatat log lalu lintas jaringan yang mencurigakan.
Firewall bisa memiliki berbagai aturan yang dapat anda tambahkan atau hapus untuk menolak jaringan tertentu. Contohnya saja, hanya dapat mengakses alamat IP tertentu atau mengumpulkan semua akses dari tempat lain untuk ke satu tempat yang aman terlebih dahulu

Packet-Filter Firewall

Contoh pengaturan akses (access control) yang diterapkan dalam firewall
Pada bentuknya yang paling sederhana, sebuah firewall adalah sebuah router atau komputer yang dilengkapi dengan dua buah NIC (Network Interface Card, kartu antarmuka jaringan) yang mampu melakukan penapisan atau penyaringan terhadap paket-paket yang masuk. Perangkat jenis ini umumnya disebut dengan packet-filtering router.
Firewall jenis ini bekerja dengan cara membandingkan alamat sumber dari paket-paket tersebut dengan kebijakan pengontrolan akses yang terdaftar dalam Access Control List firewall, router tersebut akan mencoba memutuskan apakah hendak meneruskan paket yang masuk tersebut ke tujuannya atau menghentikannya. Pada bentuk yang lebih sederhana lagi, firewall hanya melakukan pengujian terhadap alamat IP atau nama domain yang menjadi sumber paket dan akan menentukan apakah hendak meneruskan atau menolak paket tersebut. Meskipun demikian, packet-filtering router tidak dapat digunakan untuk memberikan akses (atau menolaknya) dengan menggunakan basis hak-hak yang dimiliki oleh pengguna.
Cara kerja packet filter firewall
Packet-filtering router juga dapat dikonfigurasikan agar menghentikan beberapa jenis lalu lintas jaringan dan tentu saja mengizinkannya. Umumnya, hal ini dilakukan dengan mengaktifkan/menonaktifkan port TCP/IP dalam sistem firewall tersebut. Sebagai contoh, port 25 yang digunakan oleh Protokol SMTP (Simple Mail Transfer Protocol) umumnya dibiarkan terbuka oleh beberapa firewall untuk mengizinkan surat elektronik dari Internet masuk ke dalam jaringan privat, sementara port lainnya seperti port 23 yang digunakan oleh Protokol Telnet dapat dinonaktifkan untuk mencegah pengguna Internet untuk mengakses layanan yang terdapat dalam jaringan privat tersebut. Firewall juga dapat memberikan semacam pengecualian (exception) agar beberapa aplikasi dapat melewati firewall tersebut. Dengan menggunakan pendekatan ini, keamanan akan lebih kuat tapi memiliki kelemahan yang signifikan yakni kerumitan konfigurasi terhadap firewall: daftar Access Control List firewall akan membesar seiring dengan banyaknya alamat IP, nama domain, atau port yang dimasukkan ke dalamnya, selain tentunya juga exception yang diberlakukan.

Circuit Level Gateway

Cara kerja circuit level firewall
Firewall jenis lainnya adalah Circuit-Level Gateway, yang umumnya berupa komponen dalam sebuah proxy server. Firewall jenis ini beroperasi pada level yang lebih tinggi dalam model referensi tujuh lapis OSI (bekerja pada lapisan sesi/session layer) daripada Packet Filter Firewall. Modifikasi ini membuat firewall jenis ini berguna dalam rangka menyembunyikan informasi mengenai jaringan terproteksi, meskipun firewall ini tidak melakukan penyaringan terhadap paket-paket individual yang mengalir dalam koneksi.
Dengan menggunakan firewall jenis ini, koneksi yang terjadi antara pengguna dan jaringan pun disembunyikan dari pengguna. Pengguna akan dihadapkan secara langsung dengan firewall pada saat proses pembuatan koneksi dan firewall pun akan membentuk koneksi dengan sumber daya jaringan yang hendak diakses oleh pengguna setelah mengubah alamat IP dari paket yang ditransmisikan oleh dua belah pihak. Hal ini mengakibatkan terjadinya sebuah sirkuit virtual (virtual circuit) antara pengguna dan sumber daya jaringan yang ia akses.
Firewall ini dianggap lebih aman dibandingkan dengan Packet-Filtering Firewall, karena pengguna eksternal tidak dapat melihat alamat IP jaringan internal dalam paket-paket yang ia terima, melainkan alamat IP dari firewall.

Application Level Firewall

Application Level Firewall (disebut juga sebagai application proxy atau application level gateway)
Firewall jenis lainnya adalah Application Level Gateway (atau Application-Level Firewall atau sering juga disebut sebagai Proxy Firewall), yang umumnya juga merupakan komponen dari sebuah proxy server. Firewall ini tidak mengizinkan paket yang datang untuk melewati firewall secara langsung. Tetapi, aplikasi proxy yang berjalan dalam komputer yang menjalankan firewall akan meneruskan permintaan tersebut kepada layanan yang tersedia dalam jaringan privat dan kemudian meneruskan respons dari permintaan tersebut kepada komputer yang membuat permintaan pertama kali yang terletak dalam jaringan publik yang tidak aman.
Umumnya, firewall jenis ini akan melakukan autentikasi terlebih dahulu terhadap pengguna sebelum mengizinkan pengguna tersebut untuk mengakses jaringan. Selain itu, firewall ini juga mengimplementasikan mekanisme auditing dan pencatatan (logging) sebagai bagian dari kebijakan keamanan yang diterapkannya. Application Level Firewall juga umumnya mengharuskan beberapa konfigurasi yang diberlakukan pada pengguna untuk mengizinkan mesin klien agar dapat berfungsi. Sebagai contoh, jika sebuah proxy FTP dikonfigurasikan di atas sebuah application layer gateway, proxy tersebut dapat dikonfigurasikan untuk mengizinlan beberapa perintah FTP, dan menolak beberapa perintah lainnya. Jenis ini paling sering diimplementasikan pada proxy SMTP sehingga mereka dapat menerima surat elektronik dari luar (tanpa menampakkan alamat e-mail internal), lalu meneruskan e-mail tersebut kepada e-mail server dalam jaringan. Tetapi, karena adanya pemrosesan yang lebih rumit, firewall jenis ini mengharuskan komputer yang dikonfigurasikan sebagai application gateway memiliki spesifikasi yang tinggi, dan tentu saja jauh lebih lambat dibandingkan dengan packet-filter firewall.

NAT Firewall

NAT (Network Address Translation) Firewall secara otomatis menyediakan proteksi terhadap sistem yang berada di balik firewall karena NAT Firewall hanya mengizinkan koneksi yang datang dari komputer-komputer yang berada di balik firewall. Tujuan dari NAT adalah untuk melakukan multiplexing terhadap lalu lintas dari jaringan internal untuk kemudian menyampaikannya kepada jaringan yang lebih luas (MAN, WAN atau Internet) seolah-olah paket tersebut datang dari sebuah alamat IP atau beberapa alamat IP. NAT Firewall membuat tabel dalam memori yang mengandung informasi mengenai koneksi yang dilihat oleh firewall. Tabel ini akan memetakan alamat jaringan internal ke alamat eksternal. Kemampuan untuk menaruh keseluruhan jaringan di belakang sebuah alamat IP didasarkan terhadap pemetaan terhadap port-port dalam NAT firewall.
Lihat juga: Network Address Translation

Stateful Firewall

Cara kerja stateful firewall
Stateful Firewall merupakan sebuah firewall yang menggabungkan keunggulan yang ditawarkan oleh packet-filtering firewall, NAT Firewall, Circuit-Level Firewall dan Proxy Firewall dalam satu sistem. Stateful Firewall dapat melakukan filtering terhadap lalu lintas berdasarkan karakteristik paket, seperti halnya packet-filtering firewall, dan juga memiliki pengecekan terhadap sesi koneksi untuk meyakinkan bahwa sesi koneksi yang terbentuk tersebut diizinlan. Tidak seperti Proxy Firewall atau Circuit Level Firewall, Stateful Firewall umumnya didesain agar lebih transparan (seperti halnya packet-filtering firewall atau NAT firewall). Tetapi, stateful firewall juga mencakup beberapa aspek yang dimiliki oleh application level firewall, sebab ia juga melakukan inspeksi terhadap data yang datang dari lapisan aplikasi (application layer) dengan menggunakan layanan tertentu. Firewall ini hanya tersedia pada beberapa firewall kelas atas, semacam Cisco PIX. Karena menggabungkan keunggulan jenis-jenis firewall lainnya, stateful firewall menjadi lebih kompleks.

Virtual Firewall

Virtual Firewall adalah sebutan untuk beberapa firewall logis yang berada dalam sebuah perangkat fisik (komputer atau perangkat firewall lainnya). Pengaturan ini mengizinkan beberapa jaringan agar dapat diproteksi oleh sebuah firewall yang unik yang menjalankan kebijakan keamanan yang juga unik, cukup dengan menggunakan satu buah perangkat. Dengan menggunakan firewall jenis ini, sebuah ISP (Internet Service Provider) dapat menyediakan layanan firewall kepada para pelanggannya, sehingga mengamankan lalu lintas jaringan mereka, hanya dengan menggunakan satu buah perangkat. Hal ini jelas merupakan penghematan biaya yang signifikan, meski firewall jenis ini hanya tersedia pada firewall kelas atas, seperti Cisco PIX 535.

Transparent Firewall

Transparent Firewall (juga dikenal sebagai bridging firewall) bukanlah sebuah firewall yang murni, tetapi ia hanya berupa turunan dari stateful Firewall. Daripada firewall-firewall lainnya yang beroperasi pada lapisan IP ke atas, transparent firewall bekerja pada lapisan Data-Link Layer, dan kemudian ia memantau lapisan-lapisan yang ada di atasnya. Selain itu, transparent firewall juga dapat melakukan apa yang dapat dilakukan oleh packet-filtering firewall, seperti halnya stateful firewall dan tidak terlihat oleh pengguna (karena itulah, ia disebut sebagai Transparent Firewall).
Intinya, transparent firewall bekerja sebagai sebuah bridge yang bertugas untuk menyaring lalu lintas jaringan antara dua segmen jaringan. Dengan menggunakan transparent firewall, keamanan sebuah segmen jaringan pun dapat diperkuat, tanpa harus mengaplikasikan NAT Filter. Transparent Firewall menawarkan tiga buah keuntungan, yakni sebagai berikut:
  • Konfigurasi yang mudah (bahkan beberapa produk mengklaim sebagai "Zero Configuration"). Hal ini memang karena transparent firewall dihubungkan secara langsung dengan jaringan yang hendak diproteksinya, dengan memodifikasi sedikit atau tanpa memodifikasi konfigurasi firewall tersebut. Karena ia bekerja pada data-link layer, pengubahan alamat IP pun tidak dibutuhkan. Firewall juga dapat dikonfigurasikan untuk melakukan segmentasi terhadap sebuah subnet jaringan antara jaringan yang memiliki keamanan yang rendah dan keamanan yang tinggi atau dapat juga untuk melindungi sebuah host, jika memang diperlukan.
  • Kinerja yang tinggi. Hal ini disebabkan oleh firewall yang berjalan dalam lapisan data-link lebih sederhana dibandingkan dengan firewall yang berjalan dalam lapisan yang lebih tinggi. Karena bekerja lebih sederhana, maka kebutuhan pemrosesan pun lebih kecil dibandingkan dengan firewall yang berjalan pada lapisan yang tinggi, dan akhirnya performa yang ditunjukannya pun lebih tinggi.
  • Tidak terlihat oleh pengguna (stealth). Hal ini memang dikarenakan Transparent Firewall bekerja pada lapisan data-link, dan tidak membutuhkan alamat IP yang ditetapkan untuknya (kecuali untuk melakukan manajemen terhadapnya, jika memang jenisnya managed firewall). Karena itulah, transparent firewall tidak dapat terlihat oleh para penyerang. Karena tidak dapat diraih oleh penyerang (tidak memiliki alamat IP), penyerang pun tidak dapat menyerangnya.

 

8. Identifikasi Lapisan Internet dan transport

8. Identifikasi Lapisan Internet dan transport

19.53 0

8. Identifikasi Lapisan Internet dan transport

 

Dalam protokol jaringan TCP/IP, sebuah port adalah mekanisme yang mengizinkan sebuah komputer untuk mendukung beberapa sesi koneksi dengan komputer lainnya dan program di dalam jaringan. Port dapat mengidentifikasikan aplikasi dan layanan yang menggunakan koneksi di dalam jaringan TCP/IP. Sehingga, port juga mengidentifikasikan sebuah proses tertentu di mana sebuah server dapat memberikan sebuah layanan kepada klien atau bagaimana sebuah klien dapat mengakses sebuah layanan yang ada dalam server. Port dapat dikenali dengan angka 16-bit (dua byte) yang disebut dengan Port Number dan diklasifikasikan dengan jenis protokol transport apa yang digunakan, ke dalam Port TCP dan Port UDP. Karena memiliki angka 16-bit, maka total maksimum jumlah port untuk setiap protokol transport yang digunakan adalah 65536 buah.
Dilihat dari penomorannya, port UDP dan TCP dibagi menjadi tiga jenis, yakni sebagai berikut:
  • Well-known Port: yang pada awalnya berkisar antara 0 hingga 255 tapi kemudian diperlebar untuk mendukung antara 0 hingga 1023. Port number yang termasuk ke dalam well-known port, selalu merepresentasikan layanan jaringan yang sama, dan ditetapkan oleh Internet Assigned Number Authority (IANA). Beberapa di antara port-port yang berada di dalam range Well-known port masih belum ditetapkan dan direservasikan untuk digunakan oleh layanan yang bakal ada pada masa depan. Well-known port didefinisikan dalam RFC 1060.
  • Registered Port: Port-port yang digunakan oleh vendor-vendor komputer atau jaringan yang berbeda untuk mendukung aplikasi dan sistem operasi yang mereka buat. Registered port juga diketahui dan didaftarkan oleh IANA tapi tidak dialokasikan secara permanen, sehingga vendor lainnya dapat menggunakan port number yang sama. Range registered port berkisar dari 1024 hingga 49151 dan beberapa port di antaranya adalah Dynamically Assigned Port.
  • Dynamically Assigned Port: merupakan port-port yang ditetapkan oleh sistem operasi atau aplikasi yang digunakan untuk melayani request dari pengguna sesuai dengan kebutuhan. Dynamically Assigned Port berkisar dari 1024 hingga 65536 dan dapat digunakan atau dilepaskan sesuai kebutuhan.

Well-known Port

Tabel berikut ini berisi Well-known Port.
Port Jenis Port Keyword Digunakan oleh
0 TCP, UDP T/A. Dicadangkan, tidak digunakan.
1 TCP, UDP TCPmux TCP Port Service Multiplexer
2 TCP, UDP compressnet Management Utility
3 TCP, UDP compressnet Compression Process
4 TCP, UDP T/A Belum ditetapkan
5 TCP, UDP rje Remote Job Entry
6 TCP, UDP T/A Belum ditetapkan
7 TCP, UDP echo Echo
8 TCP, UDP T/A Belum ditetapkan
9 TCP, UDP discard Discard;alias=sink null
10 TCP, UDP T/A Belum ditetapkan
11 TCP, UDP systat Active Users; alias = users
12 TCP, UDP T/A Belum ditetapkan
13 TCP, UDP daytime Daytime
14 TCP, UDP T/A Belum ditetapkan
15 TCP, UDP T/A Belum ditetapkan (sebelumnya: netstat)
16 TCP, UDP T/A Belum ditetapkan
17 TCP, UDP qotd Quote of the Day; alias = quote
18 TCP, UDP msp Message Send Protocol
19 TCP, UDP chargen Character Generator; alias = ttytst source
20 TCP, UDP ftp-data File Transfer Protocol (default data)
21 TCP, UDP ftp File Transfer Protocol (control), connection dialog
22 TCP, UDP SSH Putty
23 TCP, UDP telnet Telnet
24 TCP, UDP
Any private mail system
25 TCP, UDP smtp Simple Mail Transfer Protocol; alias = mail
26 TCP, UDP T/A Belum ditetapkan
27 TCP, UDP nsw-fe NSW User System FE
28 TCP, UDP T/A Belum ditetapkan
29 TCP, UDP msg-icp MSG ICP
30 TCP, UDP T/A Belum ditetapkan
31 TCP, UDP msg-auth MSG Authentication
32 TCP, UDP
Belum ditetapkan
33 TCP, UDP dsp Display Support Protocol
34 TCP, UDP T/A Belum ditetapkan
35 TCP, UDP
Any private printer server
36 TCP, UDP T/A Belum ditetapkan
37 TCP, UDP time Time; alias = timeserver
38 TCP, UDP T/A Belum ditetapkan
39 TCP, UDP rlp Resource Location Protocol; alias = resource
40 TCP, UDP T/A Belum ditetapkan
41 TCP, UDP graphics Graphics
42 TCP, UDP nameserver Host Name Server; alias = nameserver
43 TCP, UDP nicname Who Is; alias = nicname
44 TCP, UDP mpm-flags MPM FLAGS Protocol
45 TCP, UDP mpm Message Processing Module
46 TCP, UDP mpm-snd MPM (default send)
47 TCP, UDP ni-ftp NI FTP
48 TCP, UDP T/A Belum ditetapkan
49 TCP, UDP login Login Host Protocol
50 TCP, UDP re-mail-ck Remote Mail Checking Protocol
51 TCP, UDP la-maint IMP Logical Address Maintenance
52 TCP, UDP xns-time XNS Time Protocol
53 TCP, UDP domain Domain Name System Server
54 TCP, UDP xns-ch XNS Clearinghouse
55 TCP, UDP isi-gl ISI Graphics Language
56 TCP, UDP xns-auth XNS Authentication
57 TCP, UDP
Any private terminal access
58 TCP, UDP xns-mail XNS Mail
59 TCP, UDP
Any private file service
60 TCP, UDP T/A Belum ditetapkan
61 TCP, UDP ni-mail NI MAIL
62 TCP, UDP acas ACA Services
63 TCP, UDP via-ftp VIA Systems – FTP
64 TCP, UDP covia Communications Integrator (CI)
65 TCP, UDP tacacs-ds TACACS-Database Service
66 TCP, UDP sql*net Oracle SQL*NET
67 TCP, UDP bootpc DHCP/BOOTP Protocol Server
68 TCP, UDP bootpc DHCP/BOOTP Protocol Server
69 TCP, UDP tftp Trivial File Transfer Protocol
70 TCP, UDP gopher Gopher
71 TCP, UDP netrjs-1 Remote Job Service
72 TCP, UDP netrjs-2 Remote Job Service
73 TCP, UDP netrjs-3 Remote Job Service
74 TCP, UDP netrjs-4 Remote Job Service
75 UDP T/A Any private dial-out service
76 TCP, UDP T/A Belum ditetapkan
77 TCP, UDP
Any private RJE service
78 TCP, UDP vetTCP VetTCP
79 TCP, UDP finger Finger
80 TCP, UDP www World Wide Web HTTP
81 TCP, UDP hosts2-ns HOSTS2 Name Server
82 TCP, UDP xfer XFER Utility
83 TCP, UDP mit-ml-dev MIT ML Device
84 TCP, UDP ctf Common Trace Facility
85 TCP, UDP mit-ml-dev MIT ML Device
86 TCP, UDP mfcobol Micro Focus Cobol
87 TCP, UDP
Any private terminal link; alias = ttylink
88 TCP, UDP kerberos Kerberos
89 TCP, UDP su-mit-tg SU/MIT Telnet Gateway
90 TCP, UDP
DNSIX Security Attribute Token Map
91 TCP, UDP mit-dov MIT Dover Spooler
92 TCP, UDP npp Network Printing Protocol
93 TCP, UDP dcp Device Control Protocol
94 TCP, UDP objcall Tivoli Object Dispatcher
95 TCP, UDP supdup SUPDUP
96 TCP, UDP dixie DIXIE Protocol Specification
97 TCP, UDP swift-rvf Swift Remote Virtual File Protocol
98 TCP, UDP tacnews TAC News
99 TCP, UDP metagram Metagram Relay
100 TCP newacct (unauthorized use)
101 TCP, UDP hostname NIC Host Name Server; alias = hostname
102 TCP, UDP iso-tsap ISO-TSAP
103 TCP, UDP gppitnp Genesis Point-to-Point Trans Net; alias = webster
104 TCP, UDP acr-nema ACR-NEMA Digital Imag. & Comm. 300
105 TCP, UDP csnet-ns Mailbox Name Nameserver
106 TCP, UDP 3com-tsmux 3COM-TSMUX
107 TCP, UDP rtelnet Remote Telnet Service
108 TCP, UDP snagas SNA Gateway Access Server
109 TCP, UDP pop2 Post Office Protocol version 2 (POP2); alias = postoffice
110 TCP, UDP pop3 Post Office Protocol version 3 (POP3); alias = postoffice
111 TCP, UDP sunrpc SUN Remote Procedure Call
112 TCP, UDP mcidas McIDAS Data Transmission Protocol
113 TCP, UDP auth Authentication Service; alias = authentication
114 TCP, UDP audionews Audio News Multicast
115 TCP, UDP sftp Simple File Transfer Protocol
116 TCP, UDP ansanotify ANSA REX Notify
117 TCP, UDP uucp-path UUCP Path Service
118 TCP, UDP sqlserv SQL Services
119 TCP, UDP nntp Network News Transfer Protocol (NNTP); alias = usenet
120 TCP, UDP cfdptkt CFDPTKT
121 TCP, UDP erpc Encore Expedited Remote Procedure Call
122 TCP, UDP smakynet SMAKYNET
123 TCP, UDP ntp Network Time Protocol; alias = ntpd ntp
124 TCP, UDP ansatrader ANSA REX Trader
125 TCP, UDP locus-map Locus PC-Interface Net Map Server
126 TCP, UDP unitary Unisys Unitary Login
127 TCP, UDP locus-con Locus PC-Interface Connection Server
128 TCP, UDP gss-xlicen GSS X License Verification
129 TCP, UDP pwdgen Password Generator Protocol
130 TCP, UDP cisco-fna Cisco FNATIVE
131 TCP, UDP cisco-tna Cisco TNATIVE
132 TCP, UDP cisco-sys Cisco SYSMAINT
133 TCP, UDP statsrv Statistics Service
134 TCP, UDP ingres-net INGRES-NET Service
135 TCP, UDP loc-srv Location Service
136 TCP, UDP profile PROFILE Naming System
137 TCP, UDP netbios-ns NetBIOS Name Service
138 TCP, UDP netbios-dgm NetBIOS Datagram Service
139 TCP, UDP netbios-ssn NetBIOS Session Service
140 TCP, UDP emfis-data EMFIS Data Service
141 TCP, UDP emfis-cntl EMFIS Control Service
142 TCP, UDP bl-idm Britton-Lee IDM
143 TCP, UDP imap2 Interim Mail Access Protocol v2
144 TCP, UDP news NewS; alias = news
145 TCP, UDP uaac UAAC Protocol
146 TCP, UDP iso-ip0 ISO-IP0
147 TCP, UDP iso-ip ISO-IP
148 TCP, UDP cronus CRONUS-SUPPORT
149 TCP, UDP aed-512 AED 512 Emulation Service
150 TCP, UDP sql-net SQL-NET
151 TCP, UDP hems HEMS
152 TCP, UDP bftp Background File Transfer Program
153 TCP, UDP sgmp SGMP; alias = sgmp
154 TCP, UDP netsc-prod Netscape
155 TCP, UDP netsc-dev Netscape
156 TCP, UDP sqlsrv SQL Service
157 TCP, UDP knet-cmp KNET/VM Command/Message Protocol
158 TCP, UDP pcmail-srv PCMail Server; alias = repository
159 TCP, UDP nss-routing NSS-Routing
160 TCP, UDP sgmp-traps SGMP-TRAPS
161 TCP, UDP snmp Simple Network Management Protocol
162 TCP, UDP snmptrap SNMP TRAP
163 TCP, UDP cmip-man CMIP/TCP Manager
164 TCP, UDP cmip-agent CMIP/TCP Agent
165 TCP, UDP xns-courier Xerox
166 TCP, UDP s-net Sirius Systems
167 TCP, UDP namp NAMP
168 TCP, UDP rsvd RSVD
169 TCP, UDP send SEND
170 TCP, UDP print-srv Network PostScript
171 TCP, UDP multiplex Network Innovations Multiplex
172 TCP, UDP cl/1 Network Innovations CL/1
173 TCP, UDP xyplex-mux Xyplex
174 TCP, UDP mailq MAILQ
175 TCP, UDP vmnet VMNET
176 TCP, UDP genrad-mux GENRAD-MUX
177 TCP, UDP xdmcp X Display Manager Control Protocol
178 TCP, UDP nextstep NextStep Window Server
179 TCP, UDP bgp Border Gateway Protocol (BGP)
180 TCP, UDP ris Intergraph
181 TCP, UDP unify Unify
182 TCP, UDP audit Unisys Audit SITP
183 TCP, UDP ocbinder OCBinder
184 TCP, UDP ocserver OCServer
185 TCP, UDP remote-kis Remote-KIS
186 TCP, UDP kis KIS Protocol
187 TCP, UDP aci Application Communication Interface
188 TCP, UDP mumps Plus Five’s MUMPS
189 TCP, UDP qft Queued File Transport
190 TCP, UDP gacp Gateway Access Control Protocol
191 TCP, UDP prospero Prospero
192 TCP, UDP osu-nms OSU Network Monitoring System
193 TCP, UDP srmp Spider Remote Monitoring Protocol
194 TCP, UDP irc Internet Relay Chat (IRC) Protocol
195 TCP, UDP dn6-nlm-aud DNSIX Network Level Module Audit
196 TCP, UDP dn6-smmred DNSIX Session Management Module Audit Redirector
197 TCP, UDP dls Directory Location Service
198 TCP, UDP dls-mon Directory Location Service Monitor
199 TCP, UDP smux SMUX
200 TCP, UDP src IBM System Resource Controller
201 TCP, UDP at-rtmp AppleTalk Routing Maintenance
202 TCP, UDP at-nbp AppleTalk Name Binding
203 TCP, UDP at-3 AppleTalk Unused
204 TCP, UDP at-echo AppleTalk Echo
205 TCP, UDP at-5 AppleTalk Unused
206 TCP, UDP at-zis AppleTalk Zone Information
207 TCP, UDP at-7 AppleTalk Unused
208 TCP, UDP at-8 AppleTalk Unused
209 TCP, UDP tam Trivial Authenticated Mail Protocol
210 TCP, UDP z39.50 ANSI Z39.50
211 TCP, UDP 914c/g Texas Instruments 914C/G Terminal
212 TCP, UDP anet ATEXSSTR
213 TCP, UDP ipx Internetwork Packet Exchange (IPX)
214 TCP, UDP vmpwscs VM PWSCS
215 TCP, UDP softpc Insignia Solutions
216 TCP, UDP atls Access Technology License Server
217 TCP, UDP dbase dBASE UNIX
218 TCP, UDP mpp Netix Message Posting Protocol
219 TCP, UDP uarps Unisys ARPs
220 TCP, UDP imap3 Interactive Mail Access Protocol versi 3
221 TCP, UDP fln-spx Berkeley rlogind with SPX authentication
222 TCP, UDP fsh-spx Berkeley rshd with SPX authentication
223 TCP, UDP cdc Certificate Distribution Center
224–241 T/A T/A Tidak digunakan; dicadangkan
242 TCP, UDP direct Direct
243 TCP, UDP sur-meas Survey Measurement
245 TCP, UDP link LINK
246 TCP, UDP dsp3270 Display Systems Protocol
247 TCP, UDP subntbcst_tftp SUBNTBCST_TFTP
248 TCP, UDP bhfhs bhfhs
249–255 T/A T/A Tidak digunakan; dicadangkan
345 TCP, UDP pawserv Perf Analysis Workbench
346 TCP, UDP zserv Zebra server
347 TCP, UDP fatserv Fatmen Server
371 TCP, UDP clearcase Clearcase
372 TCP, UDP ulistserv UNIX Listserv
373 TCP, UDP legent-1 Legent Corporation
374 TCP, UDP legent-2 Legent Corporation
375 TCP, UDP T/A official & unofficial assignments, known security risks, trojans and applications use.
376 TCP, UDP T/A protocol and security warnings including related ports.
377 TCP, UDP T/A protocol and security warnings including related ports.
7.5. Routing

7.5. Routing

19.48 0
Router berfungsi sebagai penghubung 2 jaringan atau lebih untuk meneruskan data dari satu jaringan ke jaringan lainnya. Router berbeda dengan switch. Switch merupakan penghubung beberapa alat untuk membentuk suatu Local Area Network (LAN). Sebagai ilustrasi perbedaan fungsi dari router dan switch, switch merupakan suatu jalan, sedangkan router merupakan penghubung antar jalan. Masing-masing rumah berada pada jalan yang memiliki alamat dalam suatu urutan tertentu. Dengan cara yang sama, switch menghubungkan berbagai macam alat, dimana masing-masing alat memiliki alamat IP sendiri pada sebuah LAN.
Router sangat banyak digunakan dalam jaringan berbasis teknologi protokol TCP/IP, dan router jenis itu disebut juga dengan IP Router. Selain IP Router, ada lagi AppleTalk Router, dan masih ada beberapa jenis router lainnya. Internet merupakan contoh utama dari sebuah jaringan yang memiliki banyak router IP. Router dapat digunakan untuk menghubungkan banyak jaringan kecil ke sebuah jaringan yang lebih besar, yang disebut dengan internetwork, atau untuk membagi sebuah jaringan besar ke dalam beberapa subnetwork untuk meningkatkan kinerja dan juga mempermudah manajemennya. Router juga kadang digunakan untuk mengoneksikan dua buah jaringan yang menggunakan media yang berbeda (seperti halnya router wireless yang pada umumnya selain ia dapat menghubungkan komputer dengan menggunakan radio, ia juga mendukung penghubungan komputer dengan kabel UTP), atau berbeda arsitektur jaringan, seperti halnya dari Ethernet ke Token Ring.
Router juga dapat digunakan untuk menghubungkan LAN ke sebuah layanan telekomunikasi seperti halnya telekomunikasi leased line atau Digital Subscriber Line (DSL). Router yang digunakan untuk menghubungkan LAN ke sebuah koneksi leased line seperti T1, atau T3, sering disebut sebagai access server. Sementara itu, router yang digunakan untuk menghubungkan jaringan lokal ke sebuah koneksi DSL disebut juga dengan DSL router. Router-router jenis tersebut umumnya memiliki fungsi firewall untuk melakukan penapisan paket berdasarkan alamat sumber dan alamat tujuan paket tersebut, meski beberapa router tidak memilikinya. Router yang memiliki fitur penapisan paket disebut juga dengan packet-filtering router. Router umumnya memblokir lalu lintas data yang dipancarkan secara broadcast sehingga dapat mencegah adanya broadcast storm yang mampu memperlambat kinerja jaringan.

Jenis-jenis router

Secara umum, router dibagi menjadi dua buah jenis, yakni:
  • static router (router statis): adalah sebuah router yang memiliki tabel routing statis yang di setting secara manual oleh para administrator jaringan.
  • dynamic router (router dinamis): adalah sebuah router yang memiliki dan membuat tabel routing dinamis, dengan mendengarkan lalu lintas jaringan dan juga dengan saling berhubungan dengan router lainnya.

Perbedaan Router dengan Bridge

Cara kerja router mirip dengan bridge jaringan, yakni mereka dapat meneruskan paket data jaringan dan dapat juga membagi jaringan menjadi beberapa segmen atau menyatukan segmen-segmen jaringan. Akan tetapi, router berjalan pada lapisan ketiga pada model OSI (lapisan jaringan), dan menggunakan skema pengalamatan yang digunakan pada lapisan itu, seperti halnya alamat IP. Sementara itu, bridge jaringan berjalan pada lapisan kedua pada model OSI (lapisan data-link), dan menggunakan skema pengalamatan yang digunakan pada lapisan itu, yakni MAC address.
Sedangkan Bridge, sebaiknya digunakan untuk menghubungkan segmen-segmen jaringan yang menjalankan protokol jaringan yang sama (sebagai contoh: segmen jaringan berbasis IP dengan segmen jaringan IP lainnya). Selain itu, bridge juga dapat digunakan ketika di dalam jaringan terdapat protokol-protokol yang tidak bisa melakukan routing, seperti halnya NetBEUI. Sementara itu, router sebaiknya digunakan untuk menghubungkan segmen-segmen jaringan yang menjalankan protokol jaringan yang berebeda (seperti halnya untuk menghubungkan segmen jaringan IP dengan segmen jaringan IPX.) Secara umum, router lebih cerdas dibandingkan dengan bridge jaringan dan dapat meningkatkan bandwidth jaringan, mengingat router tidak meneruskan paket broadcast ke jaringan yang dituju. Dan, penggunaan router yang paling sering dilakukan adalah ketika kita hendak menghubungkan jaringan kita ke internet.
7. Identifikasi Lapisan Network

7. Identifikasi Lapisan Network

19.42 0

7. Identifikasi Lapisan Network

A. IP Address

Alamat IP (Internet Protocol Address atau sering disingkat IP) adalah deretan angka biner antara 32 bit sampai 128 bit yang dipakai sebagai alamat identifikasi untuk tiap komputer host dalam jaringan Internet. Panjang dari angka ini adalah 32 bit (untuk IPv4 atau IP versi 4), dan 128 bit (untuk IPv6 atau IP versi 6) yang menunjukkan alamat dari komputer tersebut pada jaringan Internet berbasis TCP/IP.
Sistem pengalamatan IP ini terbagi menjadi dua, yakni:

Perbandingan alamat IP versi 4 dan alamat IP versi 6

Kriteria Alamat IP versi 4 Alamat IP versi 6
Panjang alamat 32 bit 128 bit
Jumlah total host (teoritis) 232=±4 miliar host 2128
Menggunakan kelas alamat Ya, kelas A, B, C, D, dan E.
Belakangan tidak digunakan lagi, mengingat telah tidak relevan dengan perkembangan jaringan Internet yang pesat.
Tidak
Alamat multicast Kelas D, yaitu 224.0.0.0/4 Alamat multicast IPv6, yaitu FF00:/8
Alamat broadcast Ada Tidak ada
Alamat yang belum ditentukan 0.0.0.0 ::
Alamat loopback 127.0.0.1 ::1
Alamat IP publik Alamat IP publik IPv4, yang ditetapkan oleh otoritas Internet (IANA) Alamat IPv6 unicast global
Alamat IP pribadi Alamat IP pribadi IPv4, yang ditetapkan oleh otoritas Internet Alamat IPv6 unicast site-local (FEC0::/48)
Konfigurasi alamat otomatis Ya (APIPA) Alamat IPv6 unicast link-local (FE80::/64)
Representasi tekstual Dotted decimal format notation Colon hexadecimal format notation
Fungsi Prefiks Subnet mask atau panjang prefiks Panjang prefiks
Resolusi alamat DNS A Resource Record (Single A) AAAA Resource Record (Quad A)
 

6. Identifikasi Lapisan DataLink

19.35 0

6. Identifikasi Lapisan DataLink

A. ARP/Rarp

ARP dan RARP 

Address Resolution Protocol (ARP) dan Reverse Address Resolution Protocol (RARP) menggunakan alamat fisik unicast dan broadcast. Sebagai contoh Ethernet akan menggunakan alamat FFFFFFFFFFFF16 sebagai alamat broadcast. Sesungguhnya ARP dan RARP adalah proses pemetaan alamat fisik (Physical Address) seperti alamat NIC yang berasosiasi kepada logical address (alamat IP) atau sebaliknya.

Address Resolution Protocol (ARP)
ARP berasosiasi antara alamat fisik dan alamat IP. Pada LAN, setiap device, host, station dll diidentifikasi dalam bentuk alamat fisik yang didapat dari NIC.
Setiap host atau router yang ingin mengetahui alamat fisik daripada host atau router yang terletak dalam jaringan lokal yang sama akan mengirim paket query ARP secara broadcast, sehingga seluruh host atau router yang berada pada jaringan lokal akan menerima paket query tersebut. Kemudain setiap router atau host yang menerima paket query dari salah satu host atau router yang mengirim maka akan diproses hanya oleh host atau router yang memiliki IP yang terdapat dalam paket query ARP. Host yang menerima respons akan mengirm balik kepada pengirim query yang berisi paket berupa informasi alamat IP dan alamat fisik. Paket ini balik (reply ini sifatnya unicast. Lihat Gambar berikut).
Format Paket
Pada gambar dibawah memperlihatkan format paket ARP.
·         Hardware Type : adalah tipe hardware/perangkat keras. Banyak bit dalam field ini adlah 16 bit. Sebagai contoh untuk Ethernet mempunyai tipe 1.
·         Protocol Type : adalah tipe protokol di mana banyaknya bit dalam field ini 16 bit. Contohnya, untuk protokol IPv4 adalah 080016.
·         Hardware Length : field berisi 8 bit yang mendefinisikan panjang alamat fisik. Contohnya, untuk Ethernet, panjang alamat fisik adalah 6 byte.
·         Protocol Length : field berisi 8 bit yang mendefinisikan panjang alamat logika dalam satuan byte. Contoh : untuk protokol IPv4 panjangnya adalah 4 byte.
·         Operation Request & Reply: field berisi 16 bit ini mendefinisikan jenis paket untuk ARP apakah itu berjenis ARP request atau ARP reply.
·         Sender Hardware Address : banyaknya field adalah variabel yang mendefinisikan alamat fisik dari pengirim. Untuk Ethernet panjang nya 6 byte.
·         Sender Protocol Address : field ini panjangnya juga variabel dan untuk mendefiniskan alamat logika (alamat IP) dari pengirim.
·         Target Hardware Address : field ini panjangnya juga variabel yang mendefiniskan alamat fisik daripada target. Pada paket ARP request, field ini isinya 0 semua.
·         Target Protocol Address : field ini panjangnya juga variabel dan mendefinisikan alamat logika (IP) dari target.

Enkapsulasi (pembungkusan)
Sebuah paket ARP dienkapsulasi langsung ke frame data link. Lihat Gambar berikut.
Reverse Address Resolution Protocol (RARP)
Sesungguhnya RARP didisain untuk memecahkan masalah mapping alamat dalam sebuah mesin/komputer di mana mesin/komputer mengetahui alamat fisiknya namun tidak mengetahui alamat logikanya. Cara kerja RARP ini terjadi pada saat mesin seperti komputer atau router yang baru bergabung dalam jaringan lokal, kebanyakan tipe mesin yang menerapkan RARP adalah mesin yang diskless, atau tidak mempunyai aplikasi program dalam disk. RARP kemudian memberikan request secara broadcast di jaringan lokal. Mesin yang lain pada jaringan lokal yang mengetahui semua seluruh alamat IP akan akan meresponsnya dengan RARP reply secara unicast. Sebagai catatan, mesin yang merequest harus menjalankan program klien RARP, sedangkan mesin yang merespons harus menjalankan program server RARP. Lihat Gambar berikut.
Format Paket
Format Paket RARP persis sama dengan format paket ARP.
Enkapsulasi (pembungkusan)
Paket RARP dibungkus secara langsung ke dalam frame data link, formatnya sama dengan enkapsulasi pada paket ARP,
sumber
http://ecgalery.blogspot.com/2010/07/definisi-arp-dan-rarp.ht



B.Metode akses


Media Access Control

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Media Access Control adalah sebuah metode untuk mentransmisikan sinyal yang dimiliki oleh node-node yang terhubung ke jaringan tanpa terjadi konflik.
Ketika dua komputer meletakkan sinyal di atas media jaringan (sebagai contoh: kabel jaringan) secara simultan (berbarengan), maka kondisi yang disebut sebagai "collision" (tabrakan) akan terjadi yang akan mengakibatkan data yang ditransmisikan akan hilang atau rusak. Solusi untuk masalah ini adalah dengan menyediakan metode akses media jaringan, yang bertindak sebagai "lampu lalu lintas" yang mengizinkan aliran data dalam jaringan atau mencegah adanya aliran data untuk mencegah adanya kondisi collision.

Jenis-jenis Metode Media Access Control

Metode media akses control diimplementasikan di dalam lapisan data-link pada tujuh lapisan model referensi OSI. Secara spesifik, metode ini bahkan diimplementasikan dalam lapisan khusus di dalam lapisan data link, yakni Media Access Control Sublayer, selain tentunya Logical Link Control Sublayer. Ada empat buah metode media access control yang digunakan dalam jaringan lokal, yakni:
Dalam implementasi jaringan, beberapa perangakat pendukung jaringan semacam network interface card, switch, atau router, metode media access control diimplementasikan dengan menggunakan MAC algorithm (algoritma MAC). Meskipun algoritma MAC untuk Ethernet dan Token Ring telah didefinisikan oleh standar IEEE dan tersedia untuk publik, beberapa algoritma MAC untuk Ethernet full-duplex dipatenkan oleh perusahaan pembuatnya dan seringnya telah ditulis secara hard-code ke dalam chip Application specific integrated circuit (ASIC) yang dimiliki oleh perangkat tersebut.